RESEARCH

연구개발

연구실적

Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations

진은효, 이동헌, 배정호, 강해연, 곽민선, 서지연, 양종인, 양선영, 임선희, 임정윤, 임주현, 정고은, 정수진, 최지민, 한유민, 강승주, 이주영, 김희찬, 김주성

ABSTRACT

Background&Aims

Narrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps by endoscopists of different skill levels.

Methods

We developed convolutional neural networks (CNNs) for evaluation of diminutive colorectal polyps, based on efficient neural architecture searches via parameter sharing with augmentation using NBIs of diminutive (≤5 mm) polyps, collected from October 2015 through October 2017 at the Seoul National University Hospital, Healthcare System Gangnam Center (training set). We trained the CNN using images from 1100 adenomatous polyps and 1050 hyperplastic polyps from 1379 patients. We then tested the system using 300 images of 180 adenomatous polyps and 120 hyperplastic polyps, obtained from January 2018 to May 2019. We compared the accuracy of 22 endoscopists of different skill levels (7 novices, 4 experts, and 11 NBI-trained experts) vs the CNN in evaluation of images (adenomatous vs hyperplastic) from 180 adenomatous and 120 hyperplastic polyps. The endoscopists then evaluated the polyp images with knowledge of the CNN-processed results. We conducted mixed-effect logistic and linear regression analyses to determine the effects of AI assistance on the accuracy of analysis of diminutive colorectal polyps by endoscopists (primary outcome).

Results

The CNN distinguished adenomatous vs hyperplastic diminutive polyps with 86.7?curacy, based on histologic analysis as the reference standard. Endoscopists distinguished adenomatous vs hyperplastic diminutive polyps with 82.5% overall accuracy (novices, 73.8?curacy; experts, 83.8?curacy; and NBI-trained experts, 87.6?curacy). With knowledge of the CNN-processed results, the overall accuracy of the endoscopists increased to 88.5% (P < .05). With knowledge of the CNN-processed results, the accuracy of novice endoscopists increased to 85.6% (P < .05). The CNN-processed results significantly reduced endoscopist time of diagnosis (from 3.92 to 3.37 seconds per polyp, P = .042).

Conclusions

 We developed a CNN that significantly increases the accuracy of evaluation of diminutive colorectal polyps (as adenomatous vs hyperplastic) and reduces the time of diagnosis by endoscopists. This AI assistance system significantly increased the accuracy of analysis by novice endoscopists, who achieved near-expert levels of accuracy without extra training. The CNN assistance system can reduce the skill-level dependence of endoscopists and costs.

관련 연구실적 리스트

번호 제목 등록일

약관

약관내용